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The aim of this work is to test the Variable Screening Model (VSM) [Wille U., Hippler R.: Phys.
Rep. 132, 129 (1986)] as a method for computing correlation diagrams of neutral and ionized dia-
tomic quasimolecules by comparing the results with corresponding Hartree–Fock calculations, and to
elucidate the specific features of both aforementioned approaches in applications to given purpose.
These calculations serve as the first step in the interpretation of inner-shell vacancy production in
low-velocity ion–atom collisions inside bombarded solids.

The motivation for this work came from the need to interpret ion–solid interactions,
playing role in some physical phenomena, like in ion-induced electron emission1 and in
SIMS (Secondary Ion Mass Spectrometry) experiments. Understanding of the mechan-
isms of secondary ion creation in SIMS is of great theoretical and practical importance.

Secondary ion formation can be also caused in collision cascades by energetic en-
counters between the primary ion and target atom (PT), as well as between target atoms
(TT) themselves. This effect has been observed in connection with positive ion
emission from the light elements Al, Mg and Si under usual sputtering conditions2. The
secondary ion yields from these elements increase significantly with the primary ion
energy, and unusually high multiply-charged positive secondary ion yields are observed
at noble gas bombardment. Experimental findings2 suggest that the major reason for the
ionization of multiply-charged sputtered atoms is the presence of core holes created in
energetic collisions. The most widely accepted mechanism for the production of such
inner-shell excitations is the electron-promotion model developed originally by Fano
and Lichten3 for atomic collisions. Recently, an extension of this approach to processes
in solids has been published4.

The first step in describing these mechanisms within the one-electron approximation
represents the calculation of adiabatic MO correlation diagrams and wave functions for
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quasimolecules. A conceptually simple picture, allowing a straightforward computation
of correlation diagrams and associated wave functions for any given combination of
collision partners, gives the variable screening model developed by Eichler and Wille5–8  by
using the two-center Thomas–Fermi potential. This model is based on the idea that the
mutual screening of the atoms making up the quasimolecule may be well approximated
by spherical functions in which the screening of nuclear charges varies with the inter-
nuclear distance. Accordingly, an effective single-electron potential represented as a
sum of two spherical potentials, each centered on one of the colliding nuclei, is pro-
posed. These potentials are obtained by smoothly interpolating the screening para-
meters of suitable atomic potentials (Thomas–Fermi–Dirac (TFD) or pheno-
menological potentials) between the united-atom and the separated-atom limits.

In this paper correlation diagrams for several diatomic systems calculated by the
VSM and standard Hartree–Fock methods are compared in order to provide an illustra-
tive background for discussing the properties of the adiabatic MO correlation diagrams
obtained by different types of approaches.

THEORETICAL

Calculation of One-Electron Correlation Diagrams and Wave Functions

Variable screening model. Within VSM, the model one-electron Hamiltonian5,7 (in
atomic units) for a diatomic quasimolecule may be written as

H(r1,r2,R) = − 1/2∇ 2 + Veff(r1,r2,R)  , (1)

where r1,r2 are the distances of the electron from the two nuclei, and R is the  internu-
clear separation. The effective potential is constructed from single-electron potentials
V(r) = − Z Φ(r,α)/r, where Z is the charge number and the parameter  in the screening
function Φ(r,α) denotes collectively a set of parameters assigned to the united atom
(αua) and separated atoms (α i

sa) screening functions. For expressing the effective
screening parameter  α i

eff we adopted the interpolation scheme5,7

αi
eff = 

αi
sa λ2 + αua ρi

2

λ2 + ρi
2   , (2)

where ρi = 2ri/R (i = 1, 2) and the parameter λ2 acquires values7 between 2 and 4. The
final form for the approximated molecular single-electron potential is then7
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Veff(r1,r2,R) = − 
Z1

r1
 Φ(r1,α1

eff) − 
Z2

r2
 Φ(r2,α2

eff)  , (3)

which is most conveniently expressed in terms of prolate spheroidal coordinates

ξ = 
(r1 + r2)

R
  ,    η = 

(r1 − r2)
R

  , and the azimuthal angle ϕ around the internuclear axis.

The screening functions were chosen as Thomas–Fermi–Dirac functions in the form of
Latter’s analytical expression9 or the independent-particle-model (IPM) potential of
Green, Sellin and Zachor10 (GSZ). In the latter approximation, the atomic and ionic
screening functions are written5,11

Φ(r;K,d) = (1 − p) Ω(r) + p (4a)

with

Ω(r) = [Kd (er/d − 1) + 1]−1 (4b)

and

p = (k + 1)/Z  , (4c)

where k is the degree of ionization (k = 0 for neutrals). For given Z and k, the parameter
values of K and d can be found in ref.11.

The resulting two-center one-electron Schrödinger equation

[H(ξ,η,ϕ,R) − E(R)] Ψ(ξ,η,ϕ) = 0 (5)

may conveniently be solved7 by expanding the wave function Ψ in terms of Hylleraas-
type functions12

Ψnl
m(ξ,η,ϕ) = (ξ2 − 1)m/2 e−x/2 Ln

m(x) Pl
m(η) eimϕ  , (6)
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where x = (1/a)(ξ − 1) (a being a parameter affecting the convergence properties of the
solution), Ln

m(x) and Pl
m(η) are the generalized Laguerre polynomials and the associated

Legendre functions, respectively.
Similarly as in ref.7 , the matrix elements of the kinetic energy operator T = −1/2∇ 2

as well as the overlap matrix elements were evaluated analytically, the matrix elements
involving potential terms were computed numerically. The calculation of integrals was
performed in prolate spheroidal coordinates by using combined Gauss–Laguerre or
Gauss–Legendre formulae.

An alternative way of solving Eq. (5) consists in expanding the wave function Ψ in
terms of a limited set of atomic one-electron wave functions (e.g. Slater-type orbitals).
Such an approach within VSM has been described earlier13 and will be also used in
some of our calculations. To distinguish between the two types of VSM calculations,
we will use the labelling VSM I and VSM II for the Hylleraas- and atomic wave-function-
type solutions, respectively.
Hartree–Fock method. The SCF calculations of RHF or ROHF type were performed by
using the GAMESS system14. Universally, as the atomic orbital basis sets the “valence
triple zeta” bases of McLean and Chandler were employed15, with the exception of the
Ge-system for which the Binning–Curtiss “double zeta” basis set16 was used.

RESULTS AND DISCUSSION

The Ne–Ne System

Ne–Ne is an appropriate system for testing our VSM computer codes and the adequate-
ness of AO basis set selections for SCF calculations, because there exist previous con-
structions of correlation diagrams not only by means of VSM using both TFD (ref.6)
and GSZ (ref.7) potentials, but also by an ab initio Hartree–Fock MO calculation17.
Comparison of Fig. 1 with the corresponding figure of ref.6 reveals that the graphical
representation of our VSM I calculation (TFD potential) can be considered identical to
the correlation diagram of the Ne–Ne system presented in ref.6. Although in the diag-
ram of Larkins17 some higher one-electron states ( which are present in our diagram)
are missing, it may be stated that the R-dependences of orbital energies coming from
both SCF calculations, including the position of the avoided crossing between the 2σg

and 3σg states, compare favourably.
The GSZ atomic potential is superior to the TFD one in that it can be easily parame-

terized so as to achieve an accurate reproduction of given atomic electronic structure.
In addition, it facilitates the modification of atomic potentials to encompass the de-
scription of ionized species. Therefore, in further VSM applications the analytical inde-
pendent-particle potential of Green, Sellin and Zachor10 will be applied in the effective
potential Eq. (3).
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In Fig. 2 the VSM correlation diagram is displayed which was calculated by using
the phenomenological parameter selection suggested by Garvey et al.11. For compari-
son, in this figure there are also included results of our restricted Hartree–Fock calcula-
tion. Whereas the agreement of the two types of calculation is satisfactory in the
interval of the internuclear distances 0.5 – 2 a.u., for larger internuclear distances
(about above 3 a.u.) the orbital energies computed by VSM are higher and monotoni-
cally increasing with increasing the internuclear distance. Moreover, the couples of
curves corresponding to associated g and u states do not tend to a common separated-
atom limit as it should be for a homonuclear system. These special effects, which might
be reduced to a physically unimportant proportion by a suitably chosen basis set exten-
sion, are inherent to a model case of one electron moving in the field of two screened
Coulomb centers, the solution of which is looked for in the form of expansion (6).
Some implications connected with the one-electron screened-unscreened two-center
problem have been discussed in ref.7.

In the next step of our study we tried to fit RHF data by adjusting the driving par-
ameters in VSM I calculations. We have found that choosing a = 0.82/R (at nmax = 6
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FIG. 1
Adiabatic MO correlation diagram for Ne–Ne
calculated within the VSM using TFD potential
(full lines), and the SCF model (dashed lines).
Symbols are used to represent SCF calculations
in Figs 1 through 7
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FIG. 2
Adiabatic MO correlation diagrams for Ne–Ne
calculated by VSM using the GSZ potential
(full curves). The parameter values utilized in
the calculation are λ2 = 3, a = 0.2/R, nmax = 6,
lmax = 7. Potential parameters (K, d) were cal-
culated from those taken from ref.11. The calcu-
lation has been restricted to σ(m = 0) and π(m = 1)
states. The SCF calculations are represented by
dashed lines
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and lmax = 7) one obtains VSM 3σg and 2σu states as close as possible to the SCF ones.
However, the cost paid for this local coincidence is the deterioration of the other parts
of the correlation diagram lying in the regions of −102  – −101 a.u. and around zero of
electronic energies. Further parameter variations led us to the conclusion, that the best
results for the given basis set (nmax = 6, lmax = 7) can be achieved for a being close to
0.2/R; generally, the decrease of a leads to an orbital energy shift towards higher values.

In Fig. 3 we demonstrate the influence of the parameters nmax, lmax ((nmax + 1) (lmax + 1)
is the number of basis functions for m = 0), i.e. the basis set size, on the correlation
diagrams. The increase of the basis set size has clearly salutary effects to all shortcom-
ings of the VSM solution appearing at larger internuclear separations discussed above:
orbital-level shift to higher energies and violation of the degeneracy of states at separ-
ated-atom limit. Also, the dissociation energy limits become closer to the SCF values.

Finally it was observed that variation of the parameter λ2 had smaller effect on the
calculated energies than the other parameters.

The Ne2+–Ne System

The interest in experimental studies on interaction of highly charged ions with solid
surfaces is steadily increasing18. Therefore, it is opportune to develop models for corre-
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FIG. 3
Adiabatic MO correlation diagrams for Ne–Ne.
Expansion parameters nmax = 8, lmax = 9, for re-
maining parameter values and further specifica-
tions see captions to Figs 1 and 2
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FIG. 4
Adiabatic MO correlation diagrams for the
charge-imbalanced system Ne2+–Ne (full curves)
as calculated by VSM I (for the parameter de-
finition see Fig. 2), and for the (Ne–Ne)2+ sys-
tem (symbols + dashed lines) calculated by the
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lation diagram construction of charged quasimolecules. Because of the projectile ioni-
zation, the incoming channel of an ion-atom encounter represents a charge-imbalanced
system, which corresponds to an excited state of the adiabatically relaxed quasimole-
cule. Figure 4 presents our VSM calculation of the correlation diagram for the Ne2+–Ne
system. We compare it with the RHF orbital energies for the quasimolecular ground
state of (Ne–Ne)2+ treated as a homonuclear system, i.e. with the inversion-symmetry-
adapted solution. The obvious differences lie in the existence of avoided crossings and
the marked splitting of some VSM valence states in the separated-atom limit indicating
the asymmetry of the Ne2+–Ne system7, in contrast to the (homonuclear) symmetry-
adapted SCF solution. However, the agreement of the orbital energy values for the
charged Ne–Ne quasimolecule, as they are provided by both methods, is surprisingly
good which can be explained by charge equilibration for small distances (R < 2 a.u.).

Fluorides

A stimulating impulse for the calculation of correlation diagrams for fluor containing
diatomics came from the need to interpret recent measurements of F+ ion emission and
electron emission from fluorides (LiF, LaF3, CeF3) under noble gas atom or ion (Ar, Xe
and He ) bombardment13,19. The characteristic feature of these experiments is a high
yield of secondary F+ ions, despite the high ionization energy and strong dependence of
the yield on the type and the state of projectile. One of the interpretations involves a
double hole creation in F− by an electron promotion process during F−-projectile colli-
sions in which two electrons from 2p orbitals of F− are transferred and dissipated in the
conduction band of the fluoride (LiF, ref.13). As a model system for the F−-projectile
inside fluoride can serve F0, as F− is stabilized inside fluoride by the Madelung energy
which shifts the levels of F− so that they are close to the energy levels of neutral flu-
orine outside the solid.

In Fig. 5 we present adiabatic correlation diagrams for the F–He system calculated
by VSM I, VSM II (σ-orbitals only13) and the SCF method. The separated-atom F 2p
orbital evolves into the 4σ and 1π quasimolecular F–He orbitals in the course of atom–atom
approach. The promotion of the 4σ orbital begins at ≈2.5 a.u. and crosses the bottom of
the conduction band (which is around zero energy) at the distance of about 1.2 a.u.
Also shown in the Fig. 5 are the minimum kinetic energies (in eV, calculated from the
potential function of Molière20) in head-on collisions needed to reach the interatomic
distances marked by arrows.

In Fig. 6 we show the same types of diagrams as in Fig. 5 for the Ar–F system. Here
the F 2p orbital evolves into the 7σ and 2π quasimolecular F–Ar orbitals. The promo-
tion of the 7σ orbital starts at ≈1 a.u. and crosses the bottom of the conduction band at
the distance of about 0.5 a.u. Similarly as in the previous figure, kinetic energies (in
eV) needed to reach distinct interatomic distances are indicated.
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The agreement in orbital energy values for all three methods is reasonable with the
exception of the VSM I method for larger separations and high orbital energies (above
≈ −6.0 . 10−1 hartree, Ar 3p → 8σ orbital). This discrepancy can be partially removed
by basis set extension (see discussion to the Ne–Ne system).

On grounds of comparing Figs 5 and 6 it might be conjectured that the ionization of
fluorine by the electron promotion mechanism requires by one or two orders of magni-
tude less kinetic energy for He bombardment than for Ar bombardment. This correlates
well with the measured F+ yield from the bombarded LiF (ref.13).

The Ge–Ge System

Also the theoretical work on the Ge–Ge system was undertaken because of recently
performed measurements of energy distribution of electrons emitted from Ge under Ar
bombardment21. Elucidation of the high yield of secondary electrons emitted from Ge
in terms of inner-shell excitation mechanisms requires a correlation diagram which can
provide answers to questions like: Which orbital is promoted? How efficiently? How
much kinetic energy is required for the efficient promotion? What is the threshold energy?

−10−1

−100

−101

−102

0              1              2                              4

1σ

2σ

3σ

4σ

1π

R, a.u.

E, a.u.

F, 2p

330  86    35    17

FIG. 5
Adiabatic MO correlation diagrams for He–F as
calculated by VSM I (full curves), VSM II
(dotted curves) and ROHF (symbols + dashed
lines). For the expansion parameters see Fig. 2.
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Adiabatic MO correlation diagrams for Ar–F.
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In Fig. 7 we present adiabatic correlation diagrams for Ge–Ge calculated by VSM I
and by the RHF method. In order to effectively visualize this 64-electron system, the
graphical representation of orbital correlations is separated into two parts; in Fig.7a
σ-orbital energies, and in Fig. 7b π and δ orbital energies are disclosed.

Similarly as in previous cases, the optimum agreement between the two methods is
found at medium separations (0.7 – 2.0 a.u), and the VSM I results for larger internu-
clear distances can be brought closer to the SCF ones by a basis set extension. At very
short separations both methods cease to be reliable; evidently for R < 0.2 a.u. VSM
would give better results by using the united-atom Thomas–Fermi potential.

Figure 8 serves the purpose to show the small oscillations on some of SCF energy
curves (e.g. states 4πu, 7σg, 3πg, 1δu at separations between 1.2 and 1.5 a.u.). These
irregularities are a consequence of changes in the SCF electronic potential which occur
whenever an occupied MO at the Fermi surface of the molecular Hartree–Fock ground
state crosses an unoccupied MO.

In Figs 7 and 8 we can identify the following promoted levels: 6σu (1.2 – 1.7 a.u.)
and 3πg (0.8 – 1.2 a.u.). One notices also that promotion is accompanied by a robust
interplay of several adiabatic levels resulting in avoided crossings of energy levels.
Arrows in Fig. 7 indicate minimum kinetic energies required in head-on collision to
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FIG. 7
Adiabatic MO correlation diagrams for Ge–Ge as calculated by VSM I (full curves) and the RHF
method. Open and solid symbols are used to represent symmetric (g) and unsymmetric (u) states,
respectively. The parameter values used in the calculations are λ2 = 3, a = 0.2/R, nmax = 8, lmax = 9;
potential parameters (K, d) were calculated from those taken from ref.11. The distances of closest
approach in head-on collisions for different kinetic energies (eV, in the center of mass system) are
shown by arrows. MO plotted: a σ orbitals (m = 0), b π and δ orbitals (m = 1 and m = 2)
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reach given interatomic separations. From these figures it can be observed that the
promotion of the 6σu level (i.e. Ge 3d orbital) could play the key role in electronic
excitation of germanium atoms at their energetic collisions.

CONCLUSIONS

Besides giving qualitative explanation by means of particular electron promotion mech-
anisms to some atomic ion and electron emission experiments (fluorides, Ge under
noble gas bombardment), this paper brings further evidence on the capacity and charac-
teristic features of the variable screening model5,7 as a method for constructing diatomic
one-electron-state correlation diagrams. The study of the basic properties of the VSM
method is done by comparing its performance with standard molecular Hartree–Fock
calculations.

It was pleasant to note that both methods yield correlation diagrams which resemble
each other to a great extent, with the largest agreement occurring at medium intera-
tomic separations, ranging approximately from 0.5 to 3 a.u. At very short R values,
where the Hartree–Fock method suffers sometimes from convergence difficulties, the
VSM method might produce a reliable solution by using an appropriate united atom
convergent potential. Without doubt VSM is superior to the standard SCF approach in
treating encounters of charge-imbalanced systems6 (e.g. Ne2+ + Ne) in a physically cor-
rect way. A further positive feature of VSM is that it is able to describe consistently
systems with incompletely filled electron shells. The insufficiencies of the VSM solu-
tion, associated with the orbital level shift to higher energies and the violation of de-
generacy of states at separated-atom limit, might be partly overcome by basis
extension.
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Adiabatic MO correlation diagram for selected
states of Ge–Ge as calculated by the RHF method.
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One can therefore conclude that the variable screening model represents, with respect
to its computational feasibility, an interesting alternative to the theoretical treatment of
quasimolecular excitation mechanisms, particularly applicable to special problems, like
inner-shell vacancy production in low-velocity ion-atom collisions, or in diatomics with
a large number of electrons.
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